
CS 4100: Introduction to AI

Wayne Snyder
Northeastern University

Lecture 12: Markov Chains and Linear Algebra Review



Andrey Markov and Markov Chains

Markov was part of the great tradition of mathematics in Russia.

Markov started out working in number theory but then got 
interested in probability. He enjoyed poetry and the great Russian 
poet Pushkin. 

Markov studied the sequence of letters found in the text of Eugene Onegin, in particular 
the sequence of consonants and vowels. He sought a way to describe the patterns in the 
text. This eventually led to the idea of a system in which one transitions between states, 
and the probability of going to another state depends only on the current state.

Hence, Markov pioneered the study of systems in which the future state of the system 
depends only on the present state in a random fashion. Classic examples in modern life 
include the movement of stock prices and the dynamics of animal populations.

These have since been termed Markov Chains.

Markov chains are essential tools in understanding, explaining, and predicting 
phenomena in computer science, physics, biology, economics, and finance.



Markov Chains

Many applications in computing are concerned with how a system behaves over time.

Think of a Web server that is processing requests for Web pages, or the Page Rank 
algorithm Google uses to serve such requests:



Markov Chains

In Artificial Intelligence, we might want to understand how swarms of drones can learn 
to work together towards a common goal: 



Markov Chains

Or – our goals are a bit more modest in this course – how to label text with annotations 
indicating parts of speech:

All of these various problems can be addressed successfully with Markov Chains. 

8.2 • PART-OF-SPEECH TAGGING 5

will

NOUN AUX VERB DET NOUN

Janet back the bill

Part of Speech Tagger

x1 x2 x3 x4 x5

y1 y2 y3 y4 y5

Figure 8.3 The task of part-of-speech tagging: mapping from input words x1,x2, ...,xn to
output POS tags y1,y2, ...,yn .

thought that your flight was earlier). The goal of POS-tagging is to resolve theseambiguity
resolution

ambiguities, choosing the proper tag for the context.
The accuracy of part-of-speech tagging algorithms (the percentage of test setaccuracy

tags that match human gold labels) is extremely high. One study found accuracies
over 97% across 15 languages from the Universal Dependency (UD) treebank (Wu
and Dredze, 2019). Accuracies on various English treebanks are also 97% (no matter
the algorithm; HMMs, CRFs, BERT perform similarly). This 97% number is also
about the human performance on this task, at least for English (Manning, 2011).

Types: WSJ Brown
Unambiguous (1 tag) 44,432 (86%) 45,799 (85%)
Ambiguous (2+ tags) 7,025 (14%) 8,050 (15%)

Tokens:
Unambiguous (1 tag) 577,421 (45%) 384,349 (33%)
Ambiguous (2+ tags) 711,780 (55%) 786,646 (67%)

Figure 8.4 Tag ambiguity in the Brown and WSJ corpora (Treebank-3 45-tag tagset).

We’ll introduce algorithms for the task in the next few sections, but first let’s
explore the task. Exactly how hard is it? Fig. 8.4 shows that most word types
(85-86%) are unambiguous (Janet is always NNP, hesitantly is always RB). But the
ambiguous words, though accounting for only 14-15% of the vocabulary, are very
common, and 55-67% of word tokens in running text are ambiguous. Particularly
ambiguous common words include that, back, down, put and set; here are some
examples of the 6 different parts of speech for the word back:

earnings growth took a back/JJ seat
a small building in the back/NN
a clear majority of senators back/VBP the bill
Dave began to back/VB toward the door
enable the country to buy back/RP debt
I was twenty-one back/RB then

Nonetheless, many words are easy to disambiguate, because their different tags
aren’t equally likely. For example, a can be a determiner or the letter a, but the
determiner sense is much more likely.

This idea suggests a useful baseline: given an ambiguous word, choose the tag
which is most frequent in the training corpus. This is a key concept:

Most Frequent Class Baseline: Always compare a classifier against a baseline at
least as good as the most frequent class baseline (assigning each token to the class
it occurred in most often in the training set).



Markov Chains

Markov Chains are directed graphs defined by (Q, A, 𝜋):

Alternately:

𝜋 may be an initial population 
distribution of discrete individuals,
and 𝜋1 ... 𝜋n is a partition of this 
population among the states.  

𝜋 = [ .6, .4]

OR:

𝜋 = [ 600000, 400000]

q1: City q2: Suburbs

.03

.05

.97.95

A



Digression: Random Walks

A good example of a Markov Chain is a random walk in n dimensions, in which the 
idividual is a point moving in N-space. 

One-Dimensional Random Walk: Start at 0; at each step, flip a coin and go right if 
heads and left if tails:

...                   -2              -1                0                1                2                  ... 
0.50.50.50.50.5 0.5



Markov Chains and Random Walks

Results about 1D Random Walks:

o As n -> infty, the probability that the marker is in a particular location approaches 
0; but the probability that you return to this position later approaches 1.0; you will 
return to this position infinitely many times!

o Alternate to last: For any boundary (say, the position k), you will cross this 
boundary with probability 1.0. 

o After n steps, your expected distance from the start is           locations, 0.5 
probability in negative region, 0.5 in positive. 

For coin flips, after 
100 flips, expected 
distance from 
original is 
sqrt(200/pi) = 7.98



Markov Chains and Random Walks

Results about 1D Random Walks:

o As we saw in that problem, the probability that you are in local positions after a 
small number n of rounds, can be calculated using the binomial:



Markov Chains and Random Walks

Results about 1D Random Walks:

o As we saw in that problem, the probability that you are in local positions after a 
small number n of rounds, can be calculated using the binomial:



Markov Chains and Random Walks

Results about 1D Random Walks:

o As we saw in that problem, the probability that you are in local positions after a 
small number n of rounds, can be calculated using the binomial:



Markov Chains and Random Walks

Results about 1D Random Walks:

o As we saw in that problem, the probability that you are in local positions after a 
small number n of rounds, can be calculated using the binomial:



Markov Chains and Random Walks

Results about 1D Random Walks:

o As we saw in that problem, the probability that you are in local positions after a 
small number n of rounds, can be calculated using the binomial:



Markov Chains and Random Walks

Results about 1D Random Walks:

o As we saw in that problem, the probability that you are in local positions after a 
small number n of rounds, can be calculated using the binomial:



Markov Chains and Random Walks

Results about 1D Random Walks:

o As we saw in that problem, the probability that you are in local positions after a 
small number n of rounds, can be calculated using the binomial:



Markov Chains and Random Walks

Results about 1D Random Walks:

o As we saw in that problem, the probability that you are in local positions after a 
small number n of rounds, can be calculated using the binomial:



Markov Chains and Random Walks
Two-Dimensional Random Walk: Start at (0,0); at each step, flip two coins, one to 
determine if you should go left or right, and one to determine if you should go up 
or down. You go in one of four directions with ¼ probabiliy:



Markov Chains and Random Walks



Markov Chains and Random Walks

End of digression!



Markov Chains: Essential Properties

There are two equivalent ways of thinking about the dynamics of such a system, depending on 
whether you are interested in:

• One individual moving among the states – thus you start with a probability distribution 
describing whether this individual is likely to start his journey; at each time step he chooses 
the next state with the probabilities labelling the edges. 

• A population of many individuals moving en mass among the states – thus you start with a 
percentage of the total population in each state, and track how they move over time (again, 
following the probabilities on the edges). 

The most important property of a Markov Chain is that it is a stochastic process (depending on 
random events) which is memory-less: the behavior of an individual is independent of past 
states he may have been in. 

Most important questions to ask about a Markov Chain:

1. How does it evolve over time?
2. Does it converge to a steady state (where there is no change in the population dynamics)?
3. What happens if some of the information (e.g., transition probabilities) is unknown: can it 

be inferred from the observation of its behavior?
4. What extensions of the basic model are useful (e.g., Hidden Markov Models)?



Markov Chains; How do they evolve?

𝜋 = [ .6, .4]

OR:

𝜋 = [ 600000, 400000]

q1: City q2: Suburbs

.03

.05

.97.95

A



Etc.,    until...



Markov Chains and Linear Algebra

We note that the overall state of the system can be represented by a 
vector, either of the population or the probabilities:

When a vector contains real numbers which sum to 1.0, we call it a 
probability vector. 

Note that A also has a similar property: each of its columns sums to 
1.0 as well. A square matrix with this property is called a stochastic 
matrix.  



Markov Chains and Linear Algebra

Taking this Markov Chain through its successive states can be 
accomplished through matrix multiplication:



Markov Chains and Linear Algebra



Markov Chains and Linear Algebra

What can we say about the distant future? Will a given Markov 
Chain eventually stabilize to a steady state?

We can use Linear Algebra to answer this question:



Hidden Markov Models are Markov Chains with observations and 
emission probabilities. The states are considered to be unobservable or 
“hidden.”

Generalizing MCs: Hidden Markov Models



Hidden Markov Models



Hidden Markov Models

There are three main problems that are studied 
with HMMs:

Evaluation problem. Given the HMM  M=(A, B, p,O,B) 
and  the observation sequence  o1 o2 ... oK , calculate 
the probability that model M has generated the sequence.

Decoding problem. Given the HMM  M=(A, B, p,O,B) 
and  the observation sequence  o1 o2 ... oK , calculate the 
most likely sequence of hidden states s1, s2, ... sK , that 
produced  this observation sequence.

Learning problem. Given some training observation 
sequences  o1 o2 ... oK and general structure of HMM 
(numbers of hidden and visible states), determine HMM 
parameters M=(A, B, p,O,B) that best fit the training data
(alternately, determine some subset of the parameters, 
the others being given). 



Hidden Markov Models for POS Tagging

8.2 • PART-OF-SPEECH TAGGING 5

will

NOUN AUX VERB DET NOUN

Janet back the bill

Part of Speech Tagger

x1 x2 x3 x4 x5

y1 y2 y3 y4 y5

Figure 8.3 The task of part-of-speech tagging: mapping from input words x1,x2, ...,xn to
output POS tags y1,y2, ...,yn .

thought that your flight was earlier). The goal of POS-tagging is to resolve theseambiguity
resolution

ambiguities, choosing the proper tag for the context.
The accuracy of part-of-speech tagging algorithms (the percentage of test setaccuracy

tags that match human gold labels) is extremely high. One study found accuracies
over 97% across 15 languages from the Universal Dependency (UD) treebank (Wu
and Dredze, 2019). Accuracies on various English treebanks are also 97% (no matter
the algorithm; HMMs, CRFs, BERT perform similarly). This 97% number is also
about the human performance on this task, at least for English (Manning, 2011).

Types: WSJ Brown
Unambiguous (1 tag) 44,432 (86%) 45,799 (85%)
Ambiguous (2+ tags) 7,025 (14%) 8,050 (15%)

Tokens:
Unambiguous (1 tag) 577,421 (45%) 384,349 (33%)
Ambiguous (2+ tags) 711,780 (55%) 786,646 (67%)

Figure 8.4 Tag ambiguity in the Brown and WSJ corpora (Treebank-3 45-tag tagset).

We’ll introduce algorithms for the task in the next few sections, but first let’s
explore the task. Exactly how hard is it? Fig. 8.4 shows that most word types
(85-86%) are unambiguous (Janet is always NNP, hesitantly is always RB). But the
ambiguous words, though accounting for only 14-15% of the vocabulary, are very
common, and 55-67% of word tokens in running text are ambiguous. Particularly
ambiguous common words include that, back, down, put and set; here are some
examples of the 6 different parts of speech for the word back:

earnings growth took a back/JJ seat
a small building in the back/NN
a clear majority of senators back/VBP the bill
Dave began to back/VB toward the door
enable the country to buy back/RP debt
I was twenty-one back/RB then

Nonetheless, many words are easy to disambiguate, because their different tags
aren’t equally likely. For example, a can be a determiner or the letter a, but the
determiner sense is much more likely.

This idea suggests a useful baseline: given an ambiguous word, choose the tag
which is most frequent in the training corpus. This is a key concept:

Most Frequent Class Baseline: Always compare a classifier against a baseline at
least as good as the most frequent class baseline (assigning each token to the class
it occurred in most often in the training set).

Map from sequence x1,…,xn of words to y1,…,yn of POS tags 


