CS 4100: Introduction to Al
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Lecture 12: Markov Chains and Linear Algebra Review
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Andrey Andreyevich Markov

Andrey Markov and Markov Chains

Markov was part of the great tradition of mathematics in Russia.

Markov started out working in number theory but then got
interested in probability. He enjoyed poetry and the great Russian e
poet Pushkin. T aroora, Aussen

Markov studied the sequence of letters found in the text of Eugene Onegin, in particular
the sequence of consonants and vowels. He sought a way to describe the patterns in the
text. This eventually led to the idea of a system in which one transitions between states,
and the probability of going to another state depends only on the current state.

Hence, Markov pioneered the study of systems in which the future state of the system
depends only on the present state in a random fashion. Classic examples in modern life

include the movement of stock prices and the dynamics of animal populations.

These have since been termed Markov Chains.

Markov chains are essential tools in understanding, explaining, and predicting
phenomena in computer science, physics, biology, economics, and finance.



Markov Chains

Many applications in computing are concerned with how a system behaves over time.

Think of a Web server that is processing requests for Web pages, or the Page Rank

algorithm Google uses to serve such requests:
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Markov Chains

In Artificial Intelligence, we might want to understand how swarms of drones can learn
to work together towards a common goal:

Britain’s Royal Air Force chief says drone
swarms ready to crack enemy defenses

& Jul 14, 2022

By Sebastian Sprenger
O Y & in &




Markov Chains

Or — our goals are a bit more modest in this course — how to label text with annotations
indicating parts of speech:

y1 y2 y3 y4 y5

2o oS

( Part of Speech Tagger )

| | | | |
Janet will back the bill

X X X X X

1 2 3 4 5

All of these various problems can be addressed successfully with Markov Chains.



Markov Chains

Markov Chains are directed graphs defined by (Q, A, m):

Q=q192-..9n a set of N states
A =ayay...ay)...ayy a transition probability matrix A, each a;; represent-

ing the probability of moving from state i to state j, s.t.

;!=| aij=1 Vi Alternately:
=7, ,,..., AN an initial probability distribution over states. 7; is the
probability that the Markov chain will start in state i. T may be an initial population
Some states j may have x; =0, meaning that they cannot distribution of discrete individuals,
be initial states. Also, Y7 @i =1 and 7Ty ... T, is a partition of this
population among the states.
.95 .97
A
.05 From City From Suburbs
To City 95 .03
ql: City q2: Suburbs To Suburbs .05 97
.03 n=1[.6, .4]

OR:

7 =[600000,  400000]



Digression: Random Walks

A good example of a Markov Chain is a random walk in n dimensions, in which the
idividual is a point moving in N-space.

One-Dimensional Random Walk: Start at 0; at each step, flip a coin and go right if
heads and left if tails:

K

<—>_2<—>_1<—>0<—>1<—>2<—>
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Markov Chains and Random Walks

Results about 1D Random Walks:

o As n -> infty, the probability that the marker is in a particular location approaches
0; but the probability that you return to this position later approaches 1.0; you will
return to this position infinitely many times!

o Alternate to last: For any boundary (say, the position k), you will cross this
boundary with probability 1.0.

o After n steps, your expected distance from the start is \/? locations, 0.5
probability in negative region, 0.5 in positive.
For coin flips, after
=71 100 flips, expected
nfS distance from
original is

sqrt(200/pi) = 7.98
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Markov Chains and Random Walks

Results about 1D Random Walks:

o Aswe saw in that problem, the probability that you are in local positions after a
small number n of rounds, can be calculated using the binomial:

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
1.000
0.500 0.500
0.250 0.500 0.250
0.125 0.375 0.375 0.125
0.063 0.250 0.375 0.250 0.063
0.031 0.156 0.313 0.313 0.156 0.031
| 0.016 0.094 0.234 0.313 0.234 0.094 0.016
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Markov Chains and Random Walks

Results about 1D Random Walks:

o Aswe saw in that problem, the probability that you are in local positions after a
small number n of rounds, can be calculated using the binomial:

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
1.000
0.500 0.500
0.250 0.500 0.250
0.125 0.375 0.375 0.125
0.063 0.250 0.375 0.250 0.063
0.031 0.156 0.313 0.313 0.156 0.031
| 0.016 0.094 0.234 0.313 0.234 0.094 0.016 I

(0.125, 0.375, 0.375, 0.125]

k)

P(X

05

Probability Distribution for B(3,0.5)
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Markov Chains and Random Walks

Results about 1D Random Walks:

o Aswe saw in that problem, the probability that you are in local positions after a
small number n of rounds, can be calculated using the binomial:

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
1.000
0.500 0.500
0.250 0.500 0.250
0.125 0.375 0.375 0.125
0.063 0.250 0.375 0.250 0.063
0.031 0.156 0.313 0.313 0.156 0.031
| 0.016 0.094 0.234 0.313 0.234 0.094 0.016 I

k)

P{X
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044

Probability Distribution for B(5,0.5)
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Markov Chains and Random Walks

Results about 1D Random Walks:

o Aswe saw in that problem, the probability that you are in local positions after a
small number n of rounds, can be calculated using the binomial:

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
1.000
0.500 0.500
0.250 0.500 0.250
0.125 0.375 0.375 0.125
0.063 0.250 0.375 0.250 0.063
0.031 0.156 0.313 0.313 0.156 0.031
| 0.016 0.094 0.234 0.313 0.234 0.094 0.016 I

05

Probability Distribution for B(10,0.5)

044

03

k)

P{X

024

01

004

5
k in Range(X)

10




Time Step
1

O oWV bhs WwWN

Markov Chains and Random Walks

Results about 1D Random Walks:

o Aswe saw in that problem, the probability that you are in local positions after a
small number n of rounds, can be calculated using the binomial:

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
1.000
0.500 0.500
0.250 0.500 0.250
0.125 0.375 0.375 0.125
0.063 0.250 0.375 0.250 0.063
0.031 0.156 0.313 0.313 0.156 0.031
| 0.016 0.094 0.234 0.313 0.234 0.094 0.016 I
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Probability Distribution for B(20,0.5)
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Markov Chains and Random Walks

Results about 1D Random Walks:

o Aswe saw in that problem, the probability that you are in local positions after a
small number n of rounds, can be calculated using the binomial:

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
1.000
0.500 0.500
0.250 0.500 0.250
0.125 0.375 0.375 0.125
0.063 0.250 0.375 0.250 0.063
0.031 0.156 0.313 0.313 0.156 0.031
| 0.016 0.094 0.234 0.313 0.234 0.094 0.016 |

(0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0001, 0.0003, 0.0008, 0.002, 0.0044, 0.0087, 0.016, O.
027, 0.0419, 0.0598, 0.0788, 0.096, 0.108, 0.1123, 0.108, 0.096, 0.0788, 0.0598, 0.0419, 0.027, 0.016, 0.0087, 0.004
4, 0.002, 0.0008, 0.0003, 0.0001, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
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Probability Distribution for B(50,0.5)
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Markov Chains and Random Walks

Results about 1D Random Walks:

o Aswe saw in that problem, the probability that you are in local positions after a
small number n of rounds, can be calculated using the binomial:

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
1.000
0.500 0.500
0.250 0.500 0.250
0.125 0.375 0.375 0.125
0.063 0.250 0.375 0.250 0.063
0.031 0.156 0.313 0.313 0.156 0.031
| 0.016 0.094 0.234 0.313 0.234 0.094 0.016 I

P(X=k)

Probability Distribution for B(100,0.5)
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Markov Chains and Random Walks

Results about 1D Random Walks:

o Aswe saw in that problem, the probability that you are in local positions after a
small number n of rounds, can be calculated using the binomial:

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
1.000
0.500 0.500
0.250 0.500 0.250
0.125 0.375 0.375 0.125
0.063 0.250 0.375 0.250 0.063
0.031 0.156 0.313 0.313 0.156 0.031
| 0.016 0.094 0.234 0.313 0.234 0.094 0.016

P{X=k)
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Probability Distribution for B(500,0.5)
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Markov Chains and Random Walks

Two-Dimensional Random Walk: Start at (0,0); at each step, flip two coins, one to
determine if you should go left or right, and one to determine if you should go up
or down. You go in one of four directions with % probabiliy:

SO



Markov Chains and Random Walks
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Markov Chains and Random Walks

: SRS

Antony Gormley's Quantum Cloud =
sculpture in London was designed by a
computer using a random walk
algorithm.

End of digression!



Markov Chains: Essential Properties

There are two equivalent ways of thinking about the dynamics of such a system, depending on
whether you are interested in:

* One individual moving among the states — thus you start with a probability distribution
describing whether this individual is likely to start his journey; at each time step he chooses
the next state with the probabilities labelling the edges.

* A population of many individuals moving en mass among the states — thus you start with a
percentage of the total population in each state, and track how they move over time (again,
following the probabilities on the edges).

The most important property of a Markov Chain is that it is a stochastic process (depending on
random events) which is memory-less: the behavior of an individual 1s independent of past
states he may have been in.

Most important questions to ask about a Markov Chain:

1. How does it evolve over time?
Does it converge to a steady state (where there 1s no change in the population dynamics)?
3.  What happens if some of the information (e.g., transition probabilities) is unknown: can it
be inferred from the observation of its behavior?
4. What extensions of the basic model are useful (e.g., Hidden Markov Models)?



Markov Chains; How do they evolve?

.95

ql: City

2000
2001
2002
2003
2004
2005
2006
2007
2008

City
600000
582000
565440
550204.8
536188.416
523293.343
511429.875
500515.485
490474.246

.05

.03

Suburbs
400000
418000
434560

449795.2
463811.584
476706.657
488570.125
499484.515
509525.754

.97
A
From City From Suburbs
To City 95 .03
q2: Suburbs To Suburbs .05 97
m=].6 4]
OR:
m =[600000, 400000]
From City  From Suburbs
To City: 0.95 0.03
To Suburbs: 0.05 0.97




Etc.,

2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245

until...

375000.001
375000.001
375000.001
375000.001
375000.001
375000.001
375000.001
375000.001
375000.001
375000.001
375000.001
375000.001
375000.001
375000
375000
375000
375000
375000
375000
375000

624999.999
624999.999
624999.999
624999.999
624999.999
624999.999
624999.999
624999.999
624999.999
624999.999
624999.999
624999.999
624999.999
625000
625000
625000
625000
625000
625000
625000



Markov Chains and Linear Algebra

We note that the overall state of the system can be represented by a
vector, either of the population or the probabilities:

1 600,000]  [0.60
1,000, 000 | 400,000 | | 0.40

When a vector contains real numbers which sum to 1.0, we call it a
probability vector.

Note that A also has a similar property: each of its columns sums to

1.0 as well. A square matrix with this property is called a stochastic
matrix.

4 = [.95 .03]
05 97



Markov Chains and Linear Algebra

Taking this Markov Chain through its successive states can be
accomplished through matrix multiplication:

Definition. A Markov chain is a dynamical system whose state is a probability vector and which evolves according to a
stochastic matrix.

That is, it is a probability vector X, and a stochastic matrix A € R™" such that

X1 = Ax, fork=0,1,2,...

95 03| 10.60 0.582
X1 = AXO = —
05 9711040 0.418

95 .03 0.582 0.565
X; = Axqy = =
05 97110418 0.435
To answer the question for 2020, i.e., k = 20, we note that

20
X309 = A.Ax0 — AZOXO_




Markov Chains and Linear Algebra

In [49]): import numpy as np

# stochastic matrix A

A = np.array(
[(0.95,0.03]),
[0.05,0.97]])

B
AN B W N e

~

#
# initial state vector x 0
X 0 = np.array([0.60,0.40])
10 print('x 0:',x 0)

11 #

12 # compute A times x 0

13 x1=A@x0

print('x_20',x 20)

#
# compute A"240

O

14 |print('x 1:',x 1)

15 | #

16 # compute A times x 0

17 x 2 =2 @x 1 # maxtrix multiplication is @
18 |print('x 2:',x 2)

19 #

20 #

21 # compute A"20

22 A_20 = np.linalg.matrix_power(A, 20)
23 #

24 # compute x 20

25 x 20 = A 20 @ x 0O

26

30 A 240 = np.linalg.matrix_power (A, 240)
31 #

32 # compute x_ 240

33 x 240 = A 240 @ x 0

34 print('x_240',x 240)

x 0: [0.6 0.4)
x_1: [0.582 0.418)

X 2: [0.56544 0.43456)
x_20 [0.417456 0.582544]
X_240 [0.375 0.625)



Markov Chains and Linear Algebra

What can we say about the distant future? Will a given Markov
Chain eventually stabilize to a steady state?

We can use Linear Algebra to answer this question:



Generalizing MCs: Hidden Markov Models

Hidden Markov Models are Markov Chains with observations and
emission probabilities. The states are considered to be unobservable or
“hidden.”

0=q1q2...9n a set of N states
A=ay)...a;j...ayy atransition probability matrix A, each a;; representing the probability
of moving from state i to state j, s.t. 27=| a;=1 Vi

0=0,0;...0r a sequence of T observations, each one drawn from a vocabulary V =
VI, V2000 W
B=bi(o) a sequence of observation likelihoods, also called emission probabili-

ties, each expressing the probability of an observation o, being generated
from a state g;

T=m,%,....,AN an initial probability distribution over states. x; is the probability that
the Markov chain will start in state i. Some states j may have 7; =0,
meaning that they cannot be initial states. Also, Y7 | m; =1

Q = {1 (Healthy), 2 (Fever)} O = {1(Dizzy), 2(Cold), 3 (Normal)}

7 =06, 0.4] . \
I 5 1 2 3
= Normal
A=[1T07103 B=|1/01(04]05
2106104 210603101



Hidden Markov Models

Q = {1 (Healthy), 2 (Fever)}

7 =1[0.6, 0.4]

K=

1

2

1

0.7

0.3

2

0.6

0.4

O = {1(Dizzy), 2(Cold), 3 (Normal)}

B=

1

2

3

0.1

0.4

0.5

0.6

0.3

0.1




Hidden Markov Models

There are three main problems that are studied
with HMMs:

Evaluation problem. Given the HMM M=(A, B, =,0,B)
and the observation sequence 0105... 0k, calculate

the probability that model M has generated the sequence.

Decoding problem. Given the HMM M=(A, B, =,0,B)
and the observation sequence 0103... 0k, calculate the
most likely sequence of hidden states sy, s, ... sk, that
produced this observation sequence.

Learning problem. Given some training observation
sequences 0102... ok and general structure of HMM
(numbers of hidden and visible states), determine HMM
parameters M=(A, B, =,0,B) that best fit the training data
(alternately, determine some subset of the parameters,
the others being given).

By
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Hidden Markov Models for POS Tagging

Map from sequence Xq,...,X, of words to y4,...,y,, of POS tags
Y1 Yo Y3 Ya Ys

*oS oS

( Part of Speech Tagger )

| | | | |
Janet will back the bill

X X X X X

1 2 3 4 5



